- A+
所属分类:python
1.1. Pandas分析步骤
- 载入数据
- 将 外链点击数 进行 COUNT。类似如下SQL:
1 2 3 4 5 6 |
SELECT reference_url, count(*) FROM log GROUP BY reference_url ORDER BY count(*) LIMIT 0, 100; |
1.2. 代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
cat pd_ng_log_stat.py #!/usr/bin/env python #-*- coding: utf-8 -*- from ng_line_parser import NgLineParser import pandas as pd import socket import struct class PDNgLogStat(object): def __init__(self): self.ng_line_parser = NgLineParser() def _log_line_iter(self, pathes): """解析文件中的每一行并生成一个迭代器""" for path in pathes: with open(path, 'r') as f: for index, line in enumerate(f): self.ng_line_parser.parse(line) yield self.ng_line_parser.to_dict() def load_data(self, path): """通过给的文件路径加载数据生成 DataFrame""" self.df = pd.DataFrame(self._log_line_iter(path)) def url_ref_stat(self): """统计外链点击情况""" group_by_cols = ['reference_url'] # 需要分组的列,只计算和显示该列 # 直接统计次数 url_ref_grp = self.df[group_by_cols].groupby( self.df['reference_url']) return url_ref_grp.agg(['count'])['reference_url'].sort_values(by='count', ascending=False) def main(): file_pathes = ['www.ttmark.com.access.log'] pd_ng_log_stat = PDNgLogStat() pd_ng_log_stat.load_data(file_pathes) # 统计外链点击情况 print pd_ng_log_stat.url_ref_stat() if __name__ == '__main__': main() |
运行统计和输出结果
1 2 3 4 5 6 7 8 9 10 11 12 13 |
python pd_ng_log_stat.py count reference_url - 574546 www.ttmark.com 331136 m.baidu.com 32990 ...... www.google.fr 192 www.google.de 147 www.google.it 136 [231 rows x 1 columns] |
昵称: HH
QQ: 275258836
ttlsa群交流沟通(QQ群②: 6690706 QQ群③: 168085569 QQ群④: 415230207(新) 微信公众号: ttlsacom)
感觉本文内容不错,读后有收获?

微信公众号
扫一扫关注运维生存时间公众号,获取最新技术文章~